Wednesday 21 January 2015

Diagram Fe-C

Karbon larut di dalam besi dalam bentuk larutan padat (solid solution) hingga 0,05% berat pada temperatur ruang. Baja dengan atom karbon terlarut hingga jumlah tersebut memiliki fasa alpha ferrite pada temperatur ruang. Pada kadar karbon lebih dari 0,05% akan terbentuk endapan karbon dalam bentuk hard intermetallic stoichiometric compound (Fe3C) yang dikenal sebagai cementite atau ferro-carbide. Selain larutan padat  ferrite yang dalam kesetimbangan dapat ditemukan pada temperatur ruang terdapat fase-fase penting lainnya, yaitu ferrite dan austenite.
Logam Fe bersifat polymorphism yaitu memiliki struktur kristal berbeda pada temperatur berbeda. Pada Fe murni, misalnya, ferrite akan berubah menjadi austenite saat dipanaskan melewati temperatur 910oC. Pada temperatur yang lebih tinggi, mendekati 1400oC austenite akan kembali berubah menjadi ferrite. Ferrite dalam hal ini memiliki struktur kristal BCC sedangkan austenite memiliki struktur kristal FCC.


Ferrite
Ferrite adalah fase larutan padat yang memiliki struktur BCC (body centered cubic). Ferrite dalam keadaan setimbang dapat ditemukan pada temperatur ruang, yaitu ferrite atau pada temperatur tinggi, yaitu ferrite. Secara umum fase ini bersifat lunak (soft), ulet (ductile), dan magnetic (magnetic) hingga temperatur tertentu, yaitu Tcurie. Kelarutan karbon di dalam fase ini relatif lebih kecil dibandingkan dengan kelarutan karbon di dalam fase larutan padat lain di dalam baja, yaitu fase austenite. Pada temperatur ruang, kelarutan karbon di dalam ferrite hanyalah sekitar 0,05%.
Berbagai jenis baja dan besi tuang dibuat dengan mengeksploitasi sifat-sifat ferrite. Baja lembaran berkadar karbon rendah dengan fase tunggal ferrite misalnya, banyak diproduksi untuk proses pembentukan logam lembaran. Dewasa ini bahkan telah dikembangkan baja berkadar karbon ultra rendah untuk karakteristik mampu bentuk yang lebih baik. Kenaikan kadar karbon secara umum akan meningkatkan sifat-sifat mekanik ferrite sebagaimana telah dibahas sebelumnya. Untuk paduan baja dengan fase tunggal ferrite, factor lain yang berpengaruh signifikan terhadap sifat-sifat mekanik adalah ukuran butir.
Austenite
Fase austenite memiliki struktur atom FCC (Face Centered Cubic). Dalam keadaan setimbang fase austenite ditemukan pada temperatur tinggi. Fase ini bersifat non magnetik dan ulet pada temperatur tinggi. Kelarutan atom karbon di dalam larutan padat austenite lebih besar jika dibandingkan dengan kelarutan atom karbon pada fase ferrite. Secara geometri, dapat dihitung perbandingan besarnya ruang intertisi di dalam fase austenite (atau kristal FCC) dan fase ferrite (atau kristal BCC). Perbedaan ini dapat digunakan untuk menjelaskan fenomena transformasi fase pada saat pendinginan austenite yang berlangsung secara cepat. Selain pada temperatur tinggi, austenite pada sistem Ferrous dapat pula direkayasa agar stabil pada temperatur ruang. Elemen-elemen seperti Mangan dan Nickel misalnya dapat menurunkan laju transformasi dari gamma-austenite menjadi alpha-ferrite. Dalam jumlah tertentu elemen-elemen tersebut akan menyebabkan austenite stabil pada temperatur ruang. Contoh baja paduan dengan fase Austenite pada temperatur ruang misalnya adalah Baja Hadfield (12%Mangan) dan Baja Stainless 18-8 (8%Ni).
Cementite
Cementite atau ferro-carbide dalam sistem paduan berbasis besi adalah stoichiometric inter-metallic compund Fe3C yang keras (hard) dan getas (brittle). Nama cementite berasal dari kata caementum yang berarti stone chip atau lempengan batu. Cementite sebenarnya dapat terurai menjadi bentuk yang lebih stabil yaitu Fe dan C sehingga sering disebut sebagai fase metastabil. Namun, untuk keperluan praktis, fase ini dapat dianggap sebagai fase stabil. cementite sangat penting perannya di dalam membentuk sifat-sifat mekanik akhir baja. cementite dapat berada di dalam sistem besi baja dalam berbagai bentuk seperti: bentuk bola (sphere), bentuk lembaran (berselang seling dengan alpha-ferrite), atau partikel-partikel carbide kecil. Bentuk, ukuran, dan distribusi karbon dapat direkayasa melalui siklus pemanasan dan pendinginan. Jarak rata-rata antar karbida, dikenal sebagai lintasan ferrite rata-rata (Ferrite Mean Path), adalah parameter penting yang dapat menjelaskan variasi sifat-sifat besi baja. Variasi sifat luluh baja diketahui berbanding lurus dengan logaritmik lintasan ferrite rata-rata.

3.1 Reaksi-reaksi Invarian dan Konstituen Mikro Penting
Secara keseluruhan ada tiga reaksi penting di dalam diagram Kesetimbangan Fase Fe-Fe3C, yaitu: Reaksi Peritectic, Reaksi Eutectic, dan Reaksi Eutectoid sebagaimana terlihat di dalam diagram kesetimbangan. Untuk sistem Besi Baja, reaksi Eutectoid adalah reaksi yang sangat penting karena dengan mengontrol Reaksi Eutectoid kita dapat memperoleh berbagai konstituen mikro atau micro constituent yang diinginkan untuk mendapatkan sifat-sifat tertentu. Berdasarkan kadar karbonnya, baja dapat pula diklasifikasikan menjadi (1) baja eutectoid, (2) baja hypoeutectoid, dan (3) baja hypereutectoid.

Sistem penamaan yang telah dikenal luas adalah sistem AISI-SAE yang menggunakan 4-5 Angka. Dua angka pertama menunjukkan elemen-elemen paduan utama (Major Alloying Elements) dan Dua atau Tiga angka sisanya menunjukkan prosentase karbon dalam per seratus persen.

Contoh

Baja dengan nama AISI-SAE 1080 misalnya, adalah jenis baja karbon (plain carbon steel) dengan kadar karbon 0.8%. Contoh dari baja jenis ini adalah baja kawat piano. Kawat piano memiliki struktur pearlite seluruhnya dan kekuatannya yang tinggi terutama diperoleh dari proses pengerjaan dingin pada proses produksinya. 

Sumber : ELISA UGM

No comments:

Post a Comment